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BACKGROUND: Accumulating evidence suggests that individuals with glucose metabolism disorders are susceptible to mortality associated with fine
particles. However, the mechanisms remain largely unknown.
OBJECTIVES:Weexaminedwhether particle-associated respiratory inflammation differed between individualswith prediabetes and healthy control participants.

METHODS: Based on a panel study [A prospective Study COmparing the cardiometabolic and respiratory effects of air Pollution Exposure on healthy
and prediabetic individuals (SCOPE)] conducted in Beijing between August 2013 and February 2015, fractional exhaled nitric oxide (FeNO) was
measured from 112 participants at two to seven visits to indicate respiratory inflammation. Particulate pollutants—including particulate matter with
an aerodynamic diameter of ≤2:5 lm (PM2:5), black carbon (BC), ultrafine particles (UFPs), and accumulated-mode particles—were monitored con-
tinuously at a single central monitoring site. Linear mixed-effects models were used to estimate associations between ln-FeNO with pollutant concen-
trations at individual 1-h lags (up to 24 h) and with average concentrations at 8 and 24 h before the clinical visit. We evaluated glucose metabolism
disorders as a potential modifier by comparing associations between participants with high vs. low average fasting blood glucose (FBG) and homeo-
stasis model assessment insulin resistance (HOMA-IR) levels.
RESULTS: FeNO was positively associated with all pollutants, with the strongest associations for an interquartile range increase in 1-h lagged exposures
(ranging from 21.3% for PM2:5 to 74.7% for BC). Associations differed significantly according to average HOMA-IR values when lagged 6–18 h for
PM2:5, 15–19 h for BC, and 6–15 h for UFPs, with positive associations among those with HOMA-IR≥1:6 while associations were closer to the null or
inverse among those with HOMA-IR<1:6. Associations between PM2:5 and FeNO were consistently higher among individuals with average
FBG≥6:1mmol=L vs. low FBG, with significant differences for multiple hourly lags.
DISCUSSION: Glucose metabolism disorders may aggravate respiratory inflammation following exposure to ambient particulate matter. https://doi.org/
10.1289/EHP4906

Introduction
Short- and long-term exposures to fine particles in ambient air
have been associated with adverse health outcomes ranging from
subclinical changes in cardiopulmonary biomarkers to premature
mortality and morbidity (Brook et al. 2010; Pope and Dockery
2006; Yang et al. 2013). However, estimated effects vary, with
some populations, such as children and the elderly, showing evi-
dence of greater susceptibility (Pope and Dockery 2006; Yang
et al. 2013). Patients with glucose metabolism disorders also may
have increased susceptibility to adverse effects of air pollution
exposure (Dubowsky et al. 2006; Chen and Schwartz 2008; Sade
et al. 2015; Zanobetti and Schwartz 2002; O’Neill et al. 2005;
Zeka et al. 2006), although the underlying mechanisms remain
unclear (Khafaie et al. 2016).

Respiratory inflammation is a critical step in the biological
mechanism underlying the cardiorespiratory effects of fine particle
exposure (Brook et al. 2010). Individuals with diabetes are at
higher risk of respiratorymortality andmorbidity than peoplewith-
out diabetes (Zineldin et al. 2015; Fuso et al. 2012; Abd El-Azeem
et al. 2013; Colbay et al. 2015; Klekotka et al. 2015; Alraei and
Ziegler 2014). Some studies have also suggested the occurrence of
more severe respiratory inflammation following particle exposure
in animal models of diabetes mellitus (DM) than in the normal ani-
mals (Mo et al. 2009; Nemmar et al. 2013). These findings suggest
that respiratory inflammation in individuals with diabetes may be
related to enhanced susceptibility to particle-associated health
effects (Dubowsky et al. 2006; Chen andSchwartz 2008; Zeka et al.
2006; O’Neill et al. 2005; Brook et al. 2010). However, few studies
have examined the potential influence of abnormal glucose metab-
olism on respiratory inflammation in response to air pollution (Han
et al. 2016; Hao et al. 2017).

Fractional exhaled nitric oxide (FeNO) is a noninvasive bio-
marker produced by a variety of airway cell types, including mac-
rophages and epithelial cells, that is commonly used to assess
respiratory inflammation caused by air pollution (Lin et al. 2011;
Huang et al. 2012; Cornell et al. 2012; Delfino et al. 2006).
Previous studies have reported that associations between FeNO
and exposure to fine particles vary depending on particle sizes
and chemical constituents (Han et al. 2016; Lin et al. 2011; Chen
et al. 2015; Gong et al. 2014).

The present analysis was based on a panel study [A prospective
Study COmparing the cardiometabolic and respiratory effects of
air Pollution Exposure on healthy and prediabetic individuals
(SCOPE)] conducted in Beijing, China, that recruited both healthy
and prediabetic participants (Wang et al. 2018). Prediabetes typi-
cally presents with insulin resistance (IR), b-cell dysfunction, and
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high levels of fasting blood glucose (FBG), which is associated with
high risk for some inflammatory diseases (Donath and Shoelson
2011; Tabák et al. 2012; Pickering et al. 2018). A national survey of
Chinese adults reported that the prevalence of prediabetes
(6:1≤FBG<7:0mmol=L) was much higher than that of diabetes
(15.5% vs. 9.7%, respectively) (Yang et al. 2010). In the present
study, we used FBG and IR to evaluate glucose metabolism in each
individual, andwe examinedwhether associations between acute re-
spiratory inflammation (as indicated by FeNO) and short-term expo-
sures to air pollutants—including particulate matter with an
aerodynamic diameter of ≤2:5 lm (PM2:5), black carbon (BC),
ultrafine particles (UFPs), and accumulated-mode (Acc) particles—
weremodified by prediabetic status.

Methods

Study Design and Participants
Participant recruitment and study design for the SCOPE study is
described in detail elsewhere (Wang et al. 2018). Briefly, SCOPE
was a panel study launched between August 2013 and February 2015
that enrolled 60 prediabetic participants (6:1≤ FBG<7:0mmol=L)
and 60 healthy control participants (FBG<6:1mmol=L) identified
based on the results of their annual health examination in the previous
year. The participants were nonsmokers or had quit smoking more
than 3 y previously, between 50 and 65 years of age, without a family
history of diabetes, and living in communities within 10 km of the air
pollution monitoring site. Male:female ratio, percentage of partici-
pants with a monthly salary of ≥8,000 Chinese Yuan Renminbi
(CNY), and percentage of participants with at least a high school
degree were matched between prediabetes and control groups. All
participants were required to complete a baseline questionnaire at
enrollment regarding their age, sex, income, education, medication
use, disease history, dietary and commuting habits, residential loca-
tion, and smoking history (nonsmoker vs. former smoker). In addi-
tion, all participants completed between two and seven follow-up
visits to the Peking University Hospital (Beijing, China) with at least
1 month between consecutive visits. The study was approved by
the institutional review board (IRB 0000105213024) of Peking
University Health Sciences Centre, and written consent was obtained
from all participants.

Eight participants were excluded from analyses because they
resumed smoking during the follow-up period. To better represent
the glucose metabolism status of each participant throughout the
study period, we recategorized the remaining 112 individuals into
high- and low-FBG groups based on their average FBG level ana-
lyzed across repeated visits, using a cutoff value of 6:1mmol=L.
According to the 1999 World Health Organization diagnostic crite-
ria, 6:1≤ FBG<7:0mmol=L and≥7:0mmol=L of FBG were cho-
sen to characterize prediabetes and diabetes, respectively (WHO
1999). The 112 participants were also split into high- and low-IR
groups based on their average homeostasis model assessment IR
(HOMA-IR), using amedianmeasurement of 1.6 as a cutoff value.

Hourly concentrations of ambient PM2:5, BC, UFPs, Acc par-
ticles, andmeteorological parameters [temperature and relative hu-
midity (RH)] were measured using instruments located on the roof
of an 18-m–high building at Peking University (PKU site, Beijing,
China) (Wang et al. 2018). The PKU site is located in an educa-
tional and residential district without major emission sources
nearby, and ambient fine particles during the study period were
mainly attributed to industrial and secondary pollution sources
(Zhang et al. 2013). Participants were asked to fast for at least 8 h
before each clinic visit. During each visit, participants rested for 10
min and completed a short questionnaire with sections on sleeping
habits, alcohol and food intake, medication use, passive smoke ex-
posure (>0:5 h), and acute respiratory disease over the previous

3 d. Clinical examinations were started at 0800 hours. Serum sam-
ples were first collected in pro-coagulation tubes by trained nurses
and then placed immediately in ice-filled boxes. FeNO was meas-
ured immediately after the serum collection, before 0900 hours.

Exposure Assessment
The mass concentration of PM2:5 was monitored at a 1-h resolution
using a tapered element oscillating microbalance (TEOM;RP1400a
instrument; Thermo Scientific). The particle number concentration
in the size range 5:6–560 nmwasmonitored with a 1-min resolution
using 32 size channels on a fast mobility particle sizer (FMPS;
Model 3,091; TSI). In each size range, the FMPS provides a normal-
ized concentration (NC) calculated as NC= dN=ðlog Du − log DlÞ,
where dN, Du, and Dl are the number concentration, and the largest
and smallest diameters of particles in the corresponding channel,
respectively. The number concentrations in 32 size ranges were cal-
culated as dN =NC× ðlog Du − log DlÞ and accumulated into the
number concentration of UFPs (5:6–93:1 nm) and Acc particles
(93:1–560 nm).

The mass concentration of BC was monitored with a 5-min
resolution, using a multi-angle absorption photometer (MAAP;
Model 5012; Thermo Scientific). Temperature and RH were
monitored using a weather station attached to a four-channel aer-
osol sampler (TH-16A; Tianhong). All instruments were self-
calibrated weekly. The FMPS was maintained weekly for clean-
ing of the sampling inlets, the high-voltage electrode, and the
electric column during calibration.

Health Measurements
To obtain FeNO samples, the participants were asked to inhale
through activated carbon to remove ambient nitric oxide and to
exhale into individual aluminum bags at a flow rate of 150 L/h at
a positive pressure of 13 cmH2O. The nitric oxide concentrations
in the samples were analyzed using a calibrated chemilumines-
cence nitrogen oxide analyzer (Model 42i; Thermo Scientific).
Serum levels of FBG and fasting plasma insulin (FINS) were
measured with an Olympus AU2700 biochemistry analyzer at
Peking University Hospital. HOMA-IR was calculated using the
levels of FBG and FINS (HOMA-IR=FBG×FINS=22:5) to
estimate the basal insulin sensitivity (Levy et al. 1998). Weight
was measured for each participant using a weighing scale (HBF-
358-BW; Omron Healthcare, Inc.), and height was measured
using a meter stick. Body mass index (BMI) was calculated as
the weight divided by the square of the height.

Statistical Analyses
Linear mixed-effect (LME) models were used to estimate associa-
tions between FeNO and exposure to each measured pollutant, and
fixed and random effects were estimated using the restricted maxi-
mum likelihood method. Random participant-specific intercepts
were used to control for within-participant variation among the
repeated measurements, but random slopes were not considered.
The dependent variable, FeNO, was ln-transformed because of its
right-skewed distribution. The independent variables were the con-
centrations of air pollutants, including PM2:5 and BC, and number
concentrations of UFPs and Acc particles. In LME models, we
examined the differences in FeNO associated with air pollutant
concentrations at hourly lags (1–24 h), and 8 and 24 h average con-
centrations prior to the starting time of visits (8 h and 24 h ACPV,
respectively). All models were adjusted for day of the week, sex,
age (continuous), and smoking history (nonsmoker vs. former
smoker). We modeled daily average temperature and RH on the
day before the visit and averaged up to 7 d before each clinic visit
using natural cubic splines with ≤3 degrees of freedom (df). We
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used the Akaike information criterion to select the final models,
which included temperature on the previous day (as a simple con-
tinuous variable) and average RH during the 7 d before the visit
(natural cubic splinewith 3 df).

Analyses to assess modification by glucose status were per-
formed by modeling product interaction terms between individual
exposures and dichotomous terms for high or low FBG or
HOMA-IR, respectively, in addition to lower-order terms. p-
Values for the product terms were used to test differences in asso-
ciations between each group.

In sensitivity analyses, single-pollutant LME models were
used to evaluate whether the exposure–response associations
changed after further adjustment for variables collected from
baseline (fixed) or follow-up (time-varying) questionnaire,
including self-reported hypoglycemic drug use, BMI, income
(<2,000 vs: 2,000–5,000 vs: 5,000–8,000 vs:>8,000CNY), edu-
cation (≥senior vs. ≤junior high school degree), sleeping hours
at night, commuting habits (walking or bicycle vs. car or public
transit), alcohol and irritating food (barbecue, pickled food, sea-
food, hotpot, and preservative-containing food) intake, passive
smoke exposure (>0:5 h vs:≤0:5 h), chronic (asthma and chronic
obstructive pulmonary disease) and acute (flue, cold, acute lar-
yngopharyngitis, and acute bronchitis) respiratory disease, and
living distance from home to monitor (continuous). Two other sen-
sitivity analyses were also conducted: The first limited the analyses
to study visits with complete data for all four pollutants, and the sec-
ond was limited to subgroups of participants with at least three vis-
its. In addition, we used distributed lag models (DLMs) to
simultaneously estimate effects over multiple hourly lags, with the
lag–response function modeled as a third-degree polynomial and a
linear association between each pollutant and ln-transformed FeNO.
For each pollutant, we used the lowest concentration measured dur-
ing the study period as the reference (threshold) value. In addition,
we ran two-pollutant LMEmodels for each pairwise combination of
the four pollutants at lag 1 h, and derived variance inflation factors
to assess collinearity between the paired pollutants.

Results from the LMEmodels are reported as the estimated per-
centage difference in FeNO with an interquartile range (IQR)
increase in each pollutant, with lag-specific IQRs derived accord-
ing to the distribution at each hourly lag. Statistical significance
was considered at p<0:05. All data analyseswere performed using
R statistical software (version 3.1; RDevelopment Core Team).

Results
In total, 112 participants completed 547 clinical visits (Table
1). The majority of participants were female (62%), had a high
school education or above (88%), and a monthly salary of
<8,000 CNY (64%). Only 3% reported chronic respiratory dis-
ease and 12% were former smokers. About half reported that
they preferred to commute on foot or bicycle. Acute respiratory
disease during the previous 3 d was reported before 14% of vis-
its (77 visits, 53 participants). There were relatively few reports
of exposure to secondhand smoke >0:5 h (80 visits, 17 partici-
pants) or alcohol use (76 visits, 41 participants) before study
visits, whereas consumption of irritating food was reported
before half of all of visits (104 participants). Nine participants
who were diagnosed with diabetes during the follow-up
reported using hypoglycemic drugs before some study visit (22
visits total).

Although SCOPE participants (n=120) were initially selected
to include equal numbers of prediabetic (6:1≤ FBG<7:0mmol=L)
and normal FBG (<6:1mmol=L) participants at baseline (Wang
et al. 2018), only 33% of participants in the present analysis were
classified as high FBGbased on values averaged over all study visits
while 53% (n=59) were classified as high HOMA-IR based on

average values (see Table S1). When jointly classified by FBG and
HOMA-IR, 38% were low for both, 24% were high for both, 29%
were high HOMA-IR and low FBG, and 8.9%were low HOMA-IR
and high FBG. The numbers of visits followed a similar joint distri-
bution. Of the 37 participants classified as high FBG based on aver-
age values, 17 had FBG≥6:1mmol=L at all of their study visits (69
visits), and 20 had elevated FBG in only a subset of their 106 study
visits (see Table S2). Sixteen participants in the high-FBG group
were diagnosedwith diabetes during the follow-up. Of the 59 classi-
fied as high IR based on average values, 33 had HOMA-IR≥1:6 at
all of their study visits (136 visits), and 26 had elevated HOMA-IR
in only a subset of their 145 study visits.

Table 1. Characteristics of the study participants at baseline and averaged
over multiple study visits.

Data source Characteristics N (%) Mean±SD Range

Baseline
questionnaire
at enrollment
(N =112)

Age (y) 112 (100) 57± 4 50–65
Home distance to

monitor (km)
109 (97) 2:2± 3:2 0–8.4

Sex
Male 43 (38)
Female 69 (62)

Chronic respiratory
diseasea

Yes 3 (3)
No 109 (97)

Smoking historyb

Yes 13 (12)
No 99 (88)

Monthly salary
≥8,000CNY

Yes 40 (36)
No 72 (64)

High school or above
Yes 99 (88)
No 13 (12)

Walking or bicyclec

Yes 53 (47)
No 59 (53)

Short
questionnaire
at each visit
(N =547)d

Night sleeping
hours

545 (99.6) 6:6± 0:9 4.5–10.0

Body mass index
(kg=m2)

547 (100) 24:5± 3:4 16.9–40.4

Hypoglycemic
drug use

Yes 22 (4)
No 524 (96)

Passive smoke
exposure≥0:5 h

Yes 80 (15)
No 466 (85)

Acute respiratory
diseasee

Yes 77 (14)
No 469 (86)

Alcohol intake
Yes 76 (14)
No 470 (86)

Irritating foodf

Yes 273 (50)
No 274 (50)

Note: CNY, Chinese Yuan Renminbi; SD, standard deviation.
aChronic respiratory disease included asthma and chronic obstructive pulmonary
disease.
bSmoking history denoted former smokers who had quit smoking for more than 3 y
(Yes), and nonsmoker (No).
cWalking or bicycle was the main commuting mode choice (Yes), instead of car or pub-
lic transit (No).
dShort questionnaire recorded information during the 3 d before visits.
eAcute respiratory disease included flu, cold, acute laryngopharyngitis, and acute
bronchitis.
fIrritating food mainly included barbecue, pickled food, seafood, hotpot, and preserva-
tive-containing food.
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As expected, average values were higher in the high- vs. low-
FBG and high vs. low HOMA-IR groups (6:8± 1:1 vs.
5:6±0:3mmol=L for FBG, and 2:7± 1:4 vs. 1:1± 0:3 for
HOMA-IR, respectively, p<0:01 for both comparisons) (Table 2).
Median values of FeNO were slightly higher in the high vs. low
HOMA-IR groups {18.7 [95% confidence interval (CI): 11.4,
28.9] vs. 18.1 (95% CI: 10.5, 27.7) ppb}, and slightly lower in the
high- vs. low-FBG groups [18.2 (95% CI: 10.5, 28.2) vs. 18.7
(95% CI: 11.2, 28.9) ppb], but the differences were not significant
(p=0:19 and 0.57, respectively). Twenty-eight FeNO measure-
ments of 27 participants were missing due to physical discomfort
of participants or power outage of the analyzer. Average concen-
trations of PM2:5, BC, UFPs, and Acc particles 1 h before clinic
visits (lag 1 h) were 72:8± 77:1 lg=m3, 6:1± 3:6 lg=m3,
ð1:6± 0:7Þ×104 counts=cm3, and ð4:4± 3:2Þ×103 counts=cm3,
respectively, and were similar with 24 h ACPV (Table 3). The
daily variation and hourly average of PM2:5 concentrations at the
PKU site during the study time period were consistent with those
queried from the Wan Liu state-controlled monitoring station
nearby (see Figure S1). PM2:5 and BC measurements were miss-
ing due to power outages or extreme weather events for 34 d dur-
ing the study period, and UFP and Acc particle measurements
were missing for 117 d. PM2:5, BC, and Acc concentrations were
strongly correlated with each other (Spearman correlation coeffi-
cients of 0.56–0.87), but not with UFP concentrations (correla-
tions of−0.02 to 0.13) (see Table S3).

FeNO was significantly higher in association with IQR
increases in lag 1–15 h BC, 1–17 h UFPs, and 1–16 h Acc par-
ticles (Figure 1, Table S4). Associations were strongest at a lag
of 1 h, and attenuated with increasing lag time. IQR increases in
lag 1 h BC, UFPs, and Acc particles were associated with 74.7%
(95% CI: 63.7%, 85.8%), 74.4% (95% CI: 66.0%, 82.8%), and
67.3% (95% CI: 57.7%, 76.9%), respectively. Associations with
PM2:5 peaked at lag 1 h [21.3% (95% CI: 13.8%, 28.8%)] and 9 h
[15.5% (95% CI: 8.7%, 22.2%)]. Average concentrations of all

four pollutants during the 8- and 24-h periods before each study
visit were also associated with higher FeNO (see Table S5).

Associations between FeNO and IQR increases in 1- to 24-h
lagged PM2:5 were consistently positive for the high-FBG group,
whereas corresponding estimates were weaker or null for the
low-FBG group, with significant differences between the two
groups at several time points (Figure 2, Table S6). In general,
associations with BC, UFPs, and Acc concentrations were also
stronger in the high-FBG group, although the difference was sig-
nificant for lag 1 h UFPs only [62.3% (95% CI: 51.9%, 72.6%) vs.
98.6% (95% CI: 85.0%, 112.2%), respectively, p=0:013].
Associations with IQR increases in 8- and 24-h average PM2:5
were positive in the high-FBG group but null in the low-FBG
group (pinteraction = 0:022 and 0.017, respectively) (see Figure S2,
Table S7).

IQR increases in the 6- to 24-h lagged PM2:5 concentrations
were associated with higher increases in FeNO in the high-IR
group than in the low-IR group, with significant differences at lag
6–18 and 23 h (Figure 2, Table S8). In general, associations with
BC, UFPs, and Acc concentrations were also stronger in the
high- vs. low-IR group after a 6-h lag, with significant differences
for BC and UFPs at several lags. The association between FeNO
and an IQR increase in average UFPs in the previous 24 h was
significantly stronger in the high- vs. low-IR group (see Figure
S2, Table S7).

Positive associations between 1-h lagged PM2:5 and FeNO
became null or inverse after adjusting for BC and Acc particles in
the population as a whole, and in all FBG and HOMA-IR sub-
groups (Figure 3, Table S9). Associations with 1-h lagged BC,
UFPs, and Acc particles remained positive in two-pollutant mod-
els, although most were closer to the null and the association
between Acc particles and FeNO was no longer significant after
adjustment for BC. Patterns were similar in the FBG and HOMA-
IR subgroups. Variance inflation factors in two-pollutant models
of 1-h lagged exposures ranged from 1.0 to 6.4, indicating only

Table 2. Levels of FBG, HOMA-IR, and FeNO in different subgroups.

Category Na n

Mean±SD Median (25th, 75th)

FBG (mmol/L) HOMA-IR FeNO (ppb)

All participant 112 519 6:0± 0:9 1:9± 1:3 18.4 (10.8, 28.4)
Low-FBG groupb 75 357 5:6± 0:3 1:7± 0:8 18.7 (11.2, 28.9)
High-FBG group 37 162 6:8± 1:1 2:5± 1:8 18.2 (10.5, 28.2)
p1c — — <0:01 <0:01 0.57
Low HOMA-IR group 53 255 5:7± 0:5 1:1± 0:3 18.1 (10.5, 27.7)
High HOMA-IR group 59 264 6:2± 1:0 2:7± 1:4 18.7 (11.4, 28.9)
p2 — — <0:01 <0:01 0.19

Note: —, not applicable; FBG, fasting blood glucose; FeNO, fractional exhaled nitric oxide; HOMA-IR, homeostasis model assessment insulin resistance; SD, standard deviation.
aNumber of the participants (N) and visits completed by participants (n).
bLow-FBG, high-FBG, low HOMA-IR, and high HOMA-IR groups referred to participants with average level of FBG <6:1 mmol/L, FBG≥6:1mmol=L, HOMA-IR <1:6, and
HOMA-IR≥1:6, respectively.
cp1 was p-value of unpaired t-test between low- and high-FBG groups, and p2 for low and high HOMA-IR groups. Test variables were FBG, HOMA-IR, and ln-transformed FeNO.

Table 3. Average levels of the 1-h and 24-h ambient pollutants and meteorological parameters prior to the starting time of the clinical visits.

Time window Variable Unit na Mean (SD) Range IQR

1 h PM2:5 lg=m3 503 72.8 (77.1) 0.7–350.6 87.1
BC lg=m3 503 6.1 (3.6) 0.5–15.7 6.3
UFPs 103=cm3 430 15.9 (6.7) 2.2–37.8 9.4
Acc 103=cm3 430 4.4 (3.2) 0.1–14.5 4.9

24 h PM2:5 lg=m3 503 74.7 (67.3) 1.0–325.4 63.4
BC lg=m3 503 5.3 (3.1) 0.5–12.7 4.8
UFPs 103=cm3 430 15.5 (4.5) 2.9–27.5 6.0
Acc 103=cm3 430 4.5 (3.0) 0.1–13.1 4.5
Temperature °C 547 13.6 (10.0) −3.9–33.7 17.8
Relative humidity % 547 47.8 (19.4) 11.9–99.6 33.7

Note: Acc, accumulated-mode particles; BC, black carbon; IQR, interquartile range; PM2:5, particulate matter with an aerodynamic diameter of ≤2:5 lm; SD, standard deviation;
UFPs, ultrafine particles.
an denotes the number of visits with valid matched pollution concentration out of a total number of 547 person-visits.
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mild multicollinearity. Associations showed little change after
additionally adjusting for BMI, hypoglycemic drug use, income,
education, sleeping and commuting habits, alcohol use, irritating
food intake, passive smoke exposure, chronic and acute respiratory
disease, and distance from home to the monitor (see Table S10). In
general, associations were slightly stronger after excluding 162
visits with missing pollutant data and were similar to the primary
estimates when restricted to 99 participants with at least three
visits.

Lag patterns based on DLM models were similar to patterns
based on the LME models (see Figure S3, Table S11). FeNO was
positively associated with 1-h lagged BC, UFPs, and Acc concen-
trations, and associations attenuated with longer lag times. PM2:5
was positively associated with FeNO at lag 1 h and had a second
peak at lag 16 h.

Discussion
FeNO was increased in association with short-term exposure to
ambient particles, namely, PM2:5, BC, UFPs, and Acc particles,
in SCOPE study participants classified as healthy and prediabetic
at baseline. Associations with PM2:5, BC, and UFPs were stron-
ger in individuals with higher average HOMA-IR during the
study period, and associations with PM2:5 were stronger among
those with higher average FBG during the study.

Our results are consistent with previous studies of FeNO
and short-term exposures to PM2:5, BC, UFPs, and Acc particles
(see Table S12). For example, Han et al. (2016) reported that
IQR increases of 8-h ACPV of PM2:5 (24:0 lg=m3), BC
(2:1 lg=m3), UFPs (8:5× 103 counts=cm3), and Acc particles
(2:2× 103 counts=cm3) were associated with 5–9.25% increases
in FeNO in elderly participants with diabetes. Hao et al. (2017)

reported a 4:7-ppb increase in FeNO associated with a
60-lg=m3 increase in 24-h ACPV of PM2:5 exposure in elderly
participants with diabetes. Jansen et al. (2005) reported that
increases of 10- and 1-lg=m3 24-h ACPV of PM2:5 and BC ex-
posure were associated with increases of 4.2 and 3:2 ppb,
respectively, in FeNO in elderly participants with chronic respi-
ratory disease. The concentrations of the four pollutants meas-
ured in our study were higher, and the ranges were wider, than
those in several studies that combined the effects of exposure to
ambient particles and glucose metabolism disorders (Zeka et al.
2006; Sade et al. 2015; Chen and Schwartz 2008; Dubowsky
et al. 2006; O’Neill et al. 2005).

Several toxicological experiments have also suggested that
impaired glucose metabolism enhances susceptibility to particle-
associated respiratory inflammation (Mo et al. 2009; Nemmar
et al. 2013). In an in vitro study of alveolar macrophages, levels
of reactive oxygen species and pro-inflammatory cytokine
mRNA expression following exposure to urban particles were
greater in macrophages from diabetic rabbits than those from
healthy rabbits (Mo et al. 2009). A study of the respiratory effects
of exposure to diesel exhaust particles (DEPs) reported increased
oxidative stress and elevated pro-inflammatory cytokine levels in
bronchoalveolar lavage fluid from diabetic mice compared to
nondiabetic control participants after intratracheal DEPs instilla-
tion (Nemmar et al. 2013).

As a crucial upstream pathway in the mechanism underlying
the cardiorespiratory effects of fine particle exposure, respiratory
inflammation closely interacts with the development of systemic
inflammation, which is important in cardiorespiratory disease
(Brook et al. 2010; Sinden and Stockley 2010). Our findings sug-
gest that associations between air pollution exposures and FeNO, a
marker of respiratory inflammation, were stronger in participants

Figure 1. Estimated percent difference in FeNO (95% CI) per IQR increase in 1- to 24-h lagged (A) PM2:5, (B) BC, (C) UFPs, and (D) Acc concentrations. All
models were single-pollutant linear mixed-effects models of ln-FeNO with random participant-specific intercepts, adjusted for ambient temperature on the pre-
vious day, average relative humidity during the 7 d before the visit, day of the week, age (continuous), sex, and smoking history (nonsmoker vs. former
smoker). See Table S4 for corresponding numeric data. Note: Acc, accumulated-mode particles; BC, black carbon; CI, confidence interval; FeNO, fractional
exhaled nitric oxide; IQR, interquartile range; PM2:5, particulate matter with an aerodynamic diameter of ≤2:5 lm; UFPs, ultrafine particles.
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with glucosemetabolism disorders than in participantswith normal
FBG and HOMA-IR values. A study of short-term PM2:5 and BC
exposures (in the previous 1–7 d) and markers of systemic inflam-
mation in nonsmoking elderly participants reported stronger and

more consistent associations in individuals with diabetes than in
other participants (Dubowsky et al. 2006). An analysis of
population-based data from the National Health and Nutrition
Examination Survey study reported an association between annual

Figure 3. Estimated percent difference in FeNO per IQR increase in 1 h lagged particle concentrations based on two-pollutant models for (A) all participants, (B)
low-FBG group, (C) high-FBG group, (D) low HOMA-IR group, and (E) high HOMA-IR group. All models were linear mixed-effects models of ln-FeNO with
random participant-specific intercepts. The models were adjusted for other pollutants as indicated, plus ambient temperature on the previous day, average relative
humidity during the 7 d before the visit, day of the week, age (continuous), sex, and smoking history (nonsmoker vs. former smoker). Low-FBG, high-FBG, low-
IR, high-IR groups referred to participants with average level of FBG<6:1mmol=L, FBG≥6:1mmol=L, HOMA-IR<1:6 and HOMA-IR≥1:6, respectively. See
Table S9 for corresponding numeric data and interaction p-values for all pairs of estimates according to FBG and HOMA-IR. The IQRs for each pollutant and lag
period are provided in Table S4. Note: Acc, accumulated-mode particles; BC, black carbon; FBG, fasting blood glucose; FeNO, fractional exhaled nitric oxide;
HOMA-IR, homeostasis model assessment insulin resistance; IQR, interquartile range; IR, insulin resistance; UFPs, ultrafine particles.

Figure 2. Estimated percent difference in FeNO (95%CI) per IQR increases in 1–24 h lagged particle concentrations according to high and low FBG (A) PM2:5, (C)
BC, (E) UFPs, and (G) Acc and HOMA-IR (B) PM2:5, (D) BC, (F) UFPs, and (H) Acc based on average values over all study visits. All models were single-pollutant
linearmixed-effects models of ln-FeNOwith randomparticipant-specific intercepts, adjusted for ambient temperature on the previous day, average relative humidity
during the 7 d before the visit, day of the week, age (continuous), sex, and smoking history (nonsmoker vs. former smoker). Low-FBG, high-FBG, low-IR, and high-
IR groups referred to participants with average level of FBG <6:1mmol=L, FBG≥6:1mmol=L, HOMA-IR<1:6 and HOMA-IR≥1:6, respectively. See Tables S6
and S8 for corresponding numeric data and interaction p-values for all pairs of estimates according to FBG and HOMA-IR. The IQRs for each pollutant and lag pe-
riod are provided in Table S4. Note: Acc, accumulated-mode particles; BC, black carbon; CI, confidence interval; FBG, fasting blood glucose; FeNO, fractional
exhaled nitric oxide; HOMA-IR, homeostasis model assessment insulin resistance; IQR, interquartile range; IR, insulin resistance; UFPs, ultrafine particles.
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concentrations of average particulate matter with an aerodynamic
diameter of ≤10 lm (PM10) and white blood cell counts that
increased in participants affected by increasing numbers of meta-
bolic syndrome components (Chen and Schwartz 2008).

Stronger associations between particulate matter air pollution
and inflammation among people with prediabetes, as suggested
by stronger associations between air pollution and FeNO among
people with elevated FBG and HOMA-IR in our study, may help
explain why individuals with metabolism disorders have been
reported to have more severe pulmonary dysfunction and higher
respiratory morbidity and mortality following exposure to ambi-
ent particles (Zeka et al. 2006; Klein et al. 2010). Klein et al.
(2010) reviewed potential mechanisms contributing to lung dys-
function in individuals with diabetes, including the formation and
deposition of glycosylated proteins in chronic hyperglycemia,
which have pro-inflammatory effects, and chronic tissue inflam-
mation in the alveolar–capillary network of the lung. A case-
crossover study of 20 American cities that examined individual-
level modifiers of associations between PM2:5 and daily mortality
reported that a secondary diagnosis of diabetes strengthened asso-
ciations between PM10 and respiratory and stroke mortality (Zeka
et al. 2006). In contrast, a cross-sectional study of type 2 diabetes
patients and hospital staff without diabetes at a hospital in Pune,
India, reported that while associations between air pollution and
reduced lung function were stronger in overweight vs. normal
weight individuals, findings did not indicate a difference by dia-
betes status (Khafaie et al. 2017).

There are several possible explanations for differences in
associations with ambient particles of different sizes or with
chemical components: UFPs have the greatest deposition effi-
ciency in the respiratory tract and are the slowest to be cleared
(Han et al. 2016; Gong et al. 2014); Acc particles (93:1–560 nm)
have the largest active surface area distribution of ambient par-
ticles and may absorb more chemicals that could activate pro-
inflammatory pathways (Rich et al. 2012); carbonaceous com-
ponents may carry various combustion-derived toxic species to
sensitive targets in the body, such as the lung or systemic circu-
lation (Cassee et al. 2013). Consistent with these characteristics
and with previous studies (Han et al. 2016; Lin et al. 2011),
associations with IQR increases in BC, UFPs, and Acc concen-
trations were stronger and more consistent than associations
with IQR increases in PM2:5 in our study population. UFPs
have greater spatial and temporal variability than the other
measured pollutants (Gong et al. 2014), and consistent with
this, UFP concentrations were not highly correlated with BC or
Acc concentrations in our study. However, the magnitude and
pattern of associations between FeNO and UFPs were not mark-
edly different from corresponding associations with BC and
Acc concentrations.

To our knowledge, this was the first study to estimate associa-
tions between short-term air pollution exposures and FeNO, an
indicator of respiratory inflammation, in prediabetic participants.
Our results add support to evidence suggesting that individuals
with metabolic disorders are more susceptible to particle-
associated health effects. A group of participants made repeated
clinical visits under different air pollution conditions, which
reduced the error variance associated with intra-individual differ-
ences. However, this study also had several limitations. First, the
participants were of relatively high socioeconomic status with ad-
vantageous health care services, so our findings may not be gen-
eralizable to those of lower socioeconomic status (Wang et al.
2018). Second, there was a potential for error in the estimation of
exposure to UFPs based on the PKU monitoring site because
UFPs are more likely to be affected by local sources and have
marked spatial variation. Third, number concentrations of UFPs

and Acc particles were based on particles between 5:6–560 nm in
size only, thus, larger particles were not included.

Our findings suggest that study participants with glucose me-
tabolism disorders, as indicated by elevated FBG and HOMA-IR
values, were more sensitive to respiratory inflammation associ-
ated with short-term ambient air pollution exposures than healthy
individuals. Associations with IQR increases in BC mass concen-
tration and UFPs and Acc number concentrations were stronger
and more consistent than associations with IQR increases in
PM2:5. These findings require confirmation, but they may be of
considerable public health importance given the high prevalence
of prediabetes and severe air pollution in China.

Acknowledgments
We are greatly thankful to all the participants in our group.

This work was supported by the Natural Science Foundation
of China (grants 21190051, 41421064, and 41121004), the
Ministry of Science and Technology project (grants 2015CB553401
and YS2017YFGH000700), and the Shenzhen Science and
Technology project (grant JSGG20170413173425899).

References
Abd El-Azeem Amal, Hamdy G, Amin M, Rashad A. 2013. Pulmonary function

changes in diabetic lung. Egypt J Chest Dis Tuberc 62(3):513–517, https://doi.org/
10.1016/j.ejcdt.2013.07.006.

Alraei R, Ziegler J. 2014. A case of a patient with type 2 diabetes and respiratory
comorbidities. Top Clin Nutr 29(4):313–324, https://doi.org/10.1097/TIN.
0000000000000011.

Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, et al.
2010. Particulate matter air pollution and cardiovascular disease: an update to the
scientific statement from the American Heart Association. Circulation 121(21):2331–
2378, PMID: 20458016, https://doi.org/10.1161/CIR.0b013e3181dbece1.

Cassee FR, Héroux ME, Gerlofs-Nijland ME, Kelly FJ. 2013. Particulate matter
beyond mass: recent health evidence on the role of fractions, chemical con-
stituents and sources of emission. Inhal Toxicol 25(14):802–812, PMID:
24304307, https://doi.org/10.3109/08958378.2013.850127.

Chen JC, Schwartz J. 2008. Metabolic syndrome and inflammatory responses to
long-term particulate air pollutants. Environ Health Perspect 116(5):612–617,
PMID: 18470293, https://doi.org/10.1289/ehp.10565.

Chen R, Qiao L, Li H, Zhao Y, Zhang Y, Xu W, et al. 2015. Fine particulate matter
constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide.
Environ Sci Technol 49(19):11859–11865, PMID: 26372312, https://doi.org/10.
1021/acs.est.5b02527.

Colbay G, Cetin M, Colbay M, Berker D, Guler S. 2015. Type 2 diabetes affects sleep
quality by disrupting the respiratory function. J Diabetes 7(5):664–671, PMID:
25266369, https://doi.org/10.1111/1753-0407.12225.

Cornell AG, Chillrud SN, Mellins RB, Acosta LM, Miller RL, Quinn JW, et al. 2012.
Domestic airborne black carbon and exhaled nitric oxide in children in NYC. J
Expo Sci Environ Epidemiol 22(3):258–266, PMID: 22377682, https://doi.org/10.
1038/jes.2012.3.

Delfino RJ, Staimer N, Gillen D, Tjoa T, Sioutas C, Fung K, et al. 2006. Personal and
ambient air pollution is associated with increased exhaled nitric oxide in chil-
dren with asthma. Environ Health Perspect 114(11):1736–1743, PMID: 17107861,
https://doi.org/10.1289/ehp.9141.

Donath MY, Shoelson SE. 2011. Type 2 diabetes as an inflammatory disease. Nat
Rev Immunol 11(2):98–107, PMID: 21233852, https://doi.org/10.1038/nri2925.

Dubowsky SD, Suh H, Schwartz J, Coull BA, Gold DR. 2006. Diabetes, obesity, and
hypertension may enhance associations between air pollution and markers of
systemic inflammation. Environ Health Perspect 114(7):992–998, PMID:
16835049, https://doi.org/10.1289/ehp.8469.

Fuso L, Pitocco D, Longobardi A, Zaccardi F, Contu C, Pozzuto C, et al. 2012.
Reduced respiratory muscle strength and endurance in type 2 diabetes melli-
tus. Diabetes Metab Res Rev 28(4):370–375, PMID: 22271438, https://doi.org/10.
1002/dmrr.2284.

Gong J, Zhu T, Kipen H, Wang G, Hu M, Guo Q, et al. 2014. Comparisons of ultrafine
and fine particles in their associations with biomarkers reflecting physiological
pathways. Environ Sci Technol 48(9):5264–5273, PMID: 24666379, https://doi.org/
10.1021/es5006016.

Han Y, Zhu T, Guan T, Zhu Y, Liu J, Ji Y, et al. 2016. Association between size-
segregated particles in ambient air and acute respiratory inflammation. Sci Total
Environ 565:412–419, PMID: 27179679, https://doi.org/10.1016/j.scitotenv.2016.04.196.

Environmental Health Perspectives 067004-7 128(6) June 2020

https://doi.org/10.1016/j.ejcdt.2013.07.006
https://doi.org/10.1016/j.ejcdt.2013.07.006
https://doi.org/10.1097/TIN.0000000000000011
https://doi.org/10.1097/TIN.0000000000000011
https://www.ncbi.nlm.nih.gov/pubmed/20458016
https://doi.org/10.1161/CIR.0b013e3181dbece1
https://www.ncbi.nlm.nih.gov/pubmed/24304307
https://doi.org/10.3109/08958378.2013.850127
https://www.ncbi.nlm.nih.gov/pubmed/18470293
https://doi.org/10.1289/ehp.10565
https://www.ncbi.nlm.nih.gov/pubmed/26372312
https://doi.org/10.1021/acs.est.5b02527
https://doi.org/10.1021/acs.est.5b02527
https://www.ncbi.nlm.nih.gov/pubmed/25266369
https://doi.org/10.1111/1753-0407.12225
https://www.ncbi.nlm.nih.gov/pubmed/22377682
https://doi.org/10.1038/jes.2012.3
https://doi.org/10.1038/jes.2012.3
https://www.ncbi.nlm.nih.gov/pubmed/17107861
https://doi.org/10.1289/ehp.9141
https://www.ncbi.nlm.nih.gov/pubmed/21233852
https://doi.org/10.1038/nri2925
https://www.ncbi.nlm.nih.gov/pubmed/16835049
https://doi.org/10.1289/ehp.8469
https://www.ncbi.nlm.nih.gov/pubmed/22271438
https://doi.org/10.1002/dmrr.2284
https://doi.org/10.1002/dmrr.2284
https://www.ncbi.nlm.nih.gov/pubmed/24666379
https://doi.org/10.1021/es5006016
https://doi.org/10.1021/es5006016
https://www.ncbi.nlm.nih.gov/pubmed/27179679
https://doi.org/10.1016/j.scitotenv.2016.04.196


Hao Y, Zhao J, Wang K, Feng N, Sun P, Chen R, et al. 2017. The association
between particulate matter air pollution and respiratory health in elderly with
type 2 diabetes mellitus. J Occup Environ Med 59(9):830–834, PMID: 28692015,
https://doi.org/10.1097/JOM.0000000000001077.

Huang W, Wang G, Lu S-E, Kipen H, Wang Y, Hu M, et al. 2012. Inflammatory and
oxidative stress responses of healthy young adults to changes in air quality
during the Beijing Olympics. Am J Respir Crit Care Med 186(11):1150–1159,
PMID: 22936356, https://doi.org/10.1164/rccm.201205-0850OC.

Jansen KL, Larson TV, Koenig JQ, Mar TF, Fields C, Stewart J, et al. 2005.
Associations between health effects and particulate matter and black carbon
in subjects with respiratory disease. Environ Health Perspect 113(12):1741–
1746, PMID: 16330357, https://doi.org/10.1289/ehp.8153.

Khafaie MA, Salvi SS, Yajnik CS, Ojha A, Khafaie B, Gore SD, et al. 2017. Air pol-
lution and respiratory health among diabetic and non-diabetic participants in
Pune, India—results from the Wellcome Trust Genetic Study. Environ Sci
Pollut Res Int 24(18):15538–15546, PMID: 28516352, https://doi.org/10.1007/
s11356-017-9148-5.

Khafaie MA, Yajnik C, Mojadam M, Khafaie B, Salvi SS, Ojha A, et al. 2016.
Association between ambient temperature and blood biomarker of systemic
inflammation in (C-reactive protein) in diabetes patients. Arch Med (Oviedo)
8(3):11. https://www.archivesofmedicine.com/medicine/association-between-
ambient-temperature-and-blood-biomarker-of-systemic-inflammationin-creactive-
protien-in-diabetes-patients.php?aid=9582 [accessed 25 May 2020].

Klein OL, Krishnan JA, Glick S, Smith LJ. 2010. Systematic review of the association
between lung function and type 2 diabetes mellitus. Diabet Med 27(9):977–987,
PMID: 20722670, https://doi.org/10.1111/j.1464-5491.2010.03073.x.

Klekotka RB, Mizgała E, Król W. 2015. The etiology of lower respiratory tract infec-
tions in people with diabetes. Pneumonol Alergol Pol 83(5):401–408, PMID:
26379004, https://doi.org/10.5603/PiAP.2015.0065.

Levy JC, Matthews DR, Hermans MP. 1998. Correct homeostasis model assessment
(HOMA) evaluation uses the computer program. Diabetes Care 21(12):2191–2192,
PMID: 9839117, https://doi.org/10.2337/diacare.21.12.2191.

Lin W, Huang W, Zhu T, Hu M, Brunekreef B, Zhang Y, et al. 2011. Acute respiratory
inflammation in children and black carbon in ambient air before and during the
2008 Beijing Olympics. Environ Health Perspect 119(10):1507–1512, PMID:
21642045, https://doi.org/10.1289/ehp.1103461.

Mo Y, Wan R, Wang J, Chien S, Tollerud DJ, Zhang Q, et al. 2009. Diabetes is asso-
ciated with increased sensitivity of alveolar macrophages to urban particulate
matter exposure. Toxicology 262(2):130–137, PMID: 19505525, https://doi.org/10.
1016/j.tox.2009.05.019.

Nemmar A, Al-Salam S, Subramaniyan D, Yasin J, Yuvaraju P, Beegam S, et al.
2013. Influence of experimental type 1 diabetes on the pulmonary effects of
diesel exhaust particles in mice. Toxicol Lett 217(2):170–176, PMID: 23147376,
https://doi.org/10.1016/j.toxlet.2012.11.004.

O’Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, et al. 2005.
Diabetes enhances vulnerability to particulate air pollution-associated impair-
ment in vascular reactivity and endothelial function. Circulation 111(22):2913–
2920, PMID: 15927967, https://doi.org/10.1161/CIRCULATIONAHA.104.517110.

Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. 2018. Recent
novel approaches to limit oxidative stress and inflammation in diabetic

complications. Clin Transl Immunology 7(4):e1016, PMID: 29713471, https://doi.org/
10.1002/cti2.1016.

Pope CA III, Dockery DW. 2006. Health effects of fine particulate air pollution: lines
that connect. J Air Waste Manag Assoc 56(6):709–742, PMID: 16805397,
https://doi.org/10.1080/10473289.2006.10464485.

Rich DQ, Zareba W, Beckett W, Hopke PK, Oakes D, Frampton MW, et al. 2012. Are
ambient ultrafine, accumulation mode, and fine particles associated with
adverse cardiac responses in patients undergoing cardiac rehabilitation?
Environ Health Perspect 120(8):1162–1169, PMID: 22542955, https://doi.org/10.
1289/ehp.1104262.

Sade MY, Kloog I, Liberty IF, Katra I, Novack L, Novack V, et al. 2015. Air pollution
and serum glucose levels: a population-based study. Medicine (Baltimore)
94(27):e1093, PMID: 26166095, https://doi.org/10.1097/MD.0000000000001093.

Sinden NJ, Stockley RA. 2010. Systemic inflammation and comorbidity in COPD: a
result of ‘overspill’ of inflammatory mediators from the lungs? Review of the
evidence. Thorax 65(10):930–936, PMID: 20627907, https://doi.org/10.1136/thx.
2009.130260.

Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. 2012. Prediabetes: a
high-risk state for diabetes development. Lancet 379(9833):2279–2290, PMID:
22683128, https://doi.org/10.1016/S0140-6736(12)60283-9.

Wang Y, Han Y, Zhu T, Li W, Zhang H. 2018. A prospective study (SCOPE) compar-
ing the cardiometabolic and respiratory effects of air pollution exposure on
healthy and pre-diabetic individuals. Sci China Life Sci 61(1):46–56, PMID:
28791588, https://doi.org/10.1007/s11427-017-9074-2.

WHO (World Health Organization). 1999. Definition, diagnosis and classification
of diabetes mellitus and its complications: report of a WHO consultation.
Part 1. diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2.
Geneva World Health Organization, Department of Noncommunicable
Disease Surveillance. http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf
[accessed 26 February 2010].

Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, et al. 2013. Rapid health transi-
tion in China, 1990–2010: findings from the Global Burden of Disease Study
2010. Lancet 381(9882):1987–2015, PMID: 23746901, https://doi.org/10.1016/
S0140-6736(13)61097-1.

Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, et al. 2010. Prevalence of diabetes
among men and women in China. N Engl J Med 362(12):1090–1101, PMID:
20335585, https://doi.org/10.1056/NEJMoa0908292.

Zanobetti A, Schwartz J. 2002. Cardiovascular damage by airborne particles: are
diabetics more susceptible? Epidemiology 13(5):588–592, PMID: 12192230,
https://doi.org/10.1097/00001648-200209000-00016.

Zeka A, Zanobetti A, Schwartz J. 2006. Individual-level modifiers of the effects of
particulate matter on daily mortality. Am J Epidemiol 163(9):849–859, PMID:
16554348, https://doi.org/10.1093/aje/kwj116.

Zhang R, Jing J, Tao J, Hsu S-C, Wang G, Cao J, et al. 2013. Chemical charac-
terization and source apportionment of PM2.5 in Beijing: seasonal perspec-
tive. Atmos Chem Phys 13(14):7053–7074, https://doi.org/10.5194/acp-13-
7053-2013.

Zineldin MAF, Hasan KAG, Al-Adl AS. 2015. Respiratory function in type II diabetes
mellitus. Egypt J Chest Dis Tuberc 64(1):219–223, https://doi.org/10.1016/j.ejcdt.
2014.08.008.

Environmental Health Perspectives 067004-8 128(6) June 2020

https://www.ncbi.nlm.nih.gov/pubmed/28692015
https://doi.org/10.1097/JOM.0000000000001077
https://www.ncbi.nlm.nih.gov/pubmed/22936356
https://doi.org/10.1164/rccm.201205-0850OC
https://www.ncbi.nlm.nih.gov/pubmed/16330357
https://doi.org/10.1289/ehp.8153
https://www.ncbi.nlm.nih.gov/pubmed/28516352
https://doi.org/10.1007/s11356-017-9148-5
https://doi.org/10.1007/s11356-017-9148-5
https://www.archivesofmedicine.com/medicine/association-between-ambient-temperature-and-blood-biomarker-of-systemic-inflammationin-creactive-protien-in-diabetes-patients.php?aid=9582
https://www.archivesofmedicine.com/medicine/association-between-ambient-temperature-and-blood-biomarker-of-systemic-inflammationin-creactive-protien-in-diabetes-patients.php?aid=9582
https://www.archivesofmedicine.com/medicine/association-between-ambient-temperature-and-blood-biomarker-of-systemic-inflammationin-creactive-protien-in-diabetes-patients.php?aid=9582
https://www.ncbi.nlm.nih.gov/pubmed/20722670
https://doi.org/10.1111/j.1464-5491.2010.03073.x
https://www.ncbi.nlm.nih.gov/pubmed/26379004
https://doi.org/10.5603/PiAP.2015.0065
https://www.ncbi.nlm.nih.gov/pubmed/9839117
https://doi.org/10.2337/diacare.21.12.2191
https://www.ncbi.nlm.nih.gov/pubmed/21642045
https://doi.org/10.1289/ehp.1103461
https://www.ncbi.nlm.nih.gov/pubmed/19505525
https://doi.org/10.1016/j.tox.2009.05.019
https://doi.org/10.1016/j.tox.2009.05.019
https://www.ncbi.nlm.nih.gov/pubmed/23147376
https://doi.org/10.1016/j.toxlet.2012.11.004
https://www.ncbi.nlm.nih.gov/pubmed/15927967
https://doi.org/10.1161/CIRCULATIONAHA.104.517110
https://www.ncbi.nlm.nih.gov/pubmed/29713471
https://doi.org/10.1002/cti2.1016
https://doi.org/10.1002/cti2.1016
https://www.ncbi.nlm.nih.gov/pubmed/16805397
https://doi.org/10.1080/10473289.2006.10464485
https://www.ncbi.nlm.nih.gov/pubmed/22542955
https://doi.org/10.1289/ehp.1104262
https://doi.org/10.1289/ehp.1104262
https://www.ncbi.nlm.nih.gov/pubmed/26166095
https://doi.org/10.1097/MD.0000000000001093
https://www.ncbi.nlm.nih.gov/pubmed/20627907
https://doi.org/10.1136/thx.2009.130260
https://doi.org/10.1136/thx.2009.130260
https://www.ncbi.nlm.nih.gov/pubmed/22683128
https://doi.org/10.1016/S0140-6736(12)60283-9
https://www.ncbi.nlm.nih.gov/pubmed/28791588
https://doi.org/10.1007/s11427-017-9074-2
http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf
https://www.ncbi.nlm.nih.gov/pubmed/23746901
https://doi.org/10.1016/S0140-6736(13)61097-1
https://doi.org/10.1016/S0140-6736(13)61097-1
https://www.ncbi.nlm.nih.gov/pubmed/20335585
https://doi.org/10.1056/NEJMoa0908292
https://www.ncbi.nlm.nih.gov/pubmed/12192230
https://doi.org/10.1097/00001648-200209000-00016
https://www.ncbi.nlm.nih.gov/pubmed/16554348
https://doi.org/10.1093/aje/kwj116
https://doi.org/10.5194/acp-13-7053-2013
https://doi.org/10.5194/acp-13-7053-2013
https://doi.org/10.1016/j.ejcdt.2014.08.008
https://doi.org/10.1016/j.ejcdt.2014.08.008

	Respiratory Inflammation and Short-Term Ambient Air Pollution Exposures in Adult Beijing Residents with and without Prediabetes: A Panel Study
	Introduction
	Methods
	Study Design and Participants
	Exposure Assessment
	Health Measurements
	Statistical Analyses

	Results
	Discussion
	Acknowledgments
	References


